skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Engebretson, Mark_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract On 20 December 2015, three Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft detected a nightside magnetotail reconnection event in the early main phase of a major geomagnetic storm. The spacecraft (P5, P4, and P3) had their footprints located over North America near the Gillam ground magnetometer station in Canada. Multipoint observations, both in space and from the ground, allow for an examination of the spatiotemporal characteristics of the disturbance on the ground and the associated physical drivers in the magnetosphere and ionosphere. This study shows that the horizontal geomagnetic field d/dt localized (on the scale of 100–300 km) feature observed at Gillam ground magnetometer site was caused by an isolated substorm onset near that station driven by a nightside magnetotail reconnection event detected by three THEMIS spacecraft that were located near the central plasma sheet. A close inspection of equivalent ionospheric current and current amplitude maps derived from ground magnetometer measurements using the spherical elementary current system technique indicates that the location of the localization lies roughly between the upward and downward field aligned current system, which is consistent with other earlier studies. This event represents the first reported observation of ground d/dt localization that is directly linked to nightside magnetotail fast flow bursts and reconnection event during the onset phase of a major Geomagnetic disturbance (GMD). 
    more » « less
  2. Abstract We investigate the timing and relative influence of VLF in the chorus frequency range observed by the DEMETER spacecraft and ULF wave activity from ground stations on daily changes in electron flux (0.23 to over 2.9 MeV) observed by the HEO‐3 spacecraft. At eachL‐shell, we use multiple regression to investigate the effects of each wave type and each daily lag independent of the others. We find that reduction and enhancement of electrons occur at different timescales. Chorus power spectral density and ULF wave power are associated with immediate electron decreases on the same day but with flux enhancement 1–2 days later. ULF is nearly always more influential than chorus on both increases and decreases of flux, although chorus is often a significant factor. There was virtually no difference in correlations of ULF Pc3, Pc4, or Pc5 with electron flux. A synergistic interaction between chorus and ULF waves means that enhancement is most effective when both waves are present, pointing to a two‐step process where local acceleration by chorus waves first energizes electrons which are then brought to even higher energies by inward radial diffusion due to ULF waves. However, decreases in flux due to these waves act additively. Chorus and ULF waves combined are most effective at describing changes in electron flux at >1.5 MeV. At lowerL(2–3), correlations between ULF and VLF (likely hiss) with electron flux were low. The most successful models, overL = 4–6, explained up to 47.1% of the variation in the data. 
    more » « less